Exploring Pre-Service Teachers' Video-based Collaborative Diagnostic Reasoning

Tews, S. & Vogel, F.

Collaborative Diagnostic Reasoning

- teachers' diagnostic competences are crucial pre-requesites for delivering effective feedback on classroom situations (Prilop et al., 2024).
- authentic cases, such as simulated or recorded classroom scenarios, can effectively foster the acquisition of diagnostic competences (Sailer et al., 2023).
- recent studies emphasized the benefits of collaborative learning for teachers' diagnostic reasoning (Pickal et al., 2023)
- interdisciplinary teacher collaboration promises to enhance professional development (Perl-Nussbaum et al., 2023)

Collaborative Problem-Solving: "process whereby two or more agents attempt to solve a problem by sharing the understanding and effort required to come to a solution and pooling their knowledge, skills and efforts to reach that solution" (OECD, 2013, p. 6)

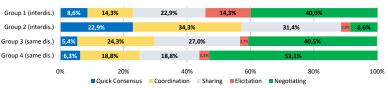
Diagnosing: "the goal-oriented collection and interpretation of case-specific or problem-specific information to reduce uncertainty in order to make [...] educational decisions." (Heitzmann et al., 2019, p. 4)

Collaborative Diagnostic Reasoning (CDR; Radkowitsch et al., 2022)

Research Question and Procedure

RQ: Which patterns of diagnostic and collaborative activities exhibit teacher dyads during video-based CDR and to what extent do CDR activities differ between interdisciplinary and same-discipline teacher teams?

Procedure:


- 1. Individual video-based diagnosis of teacher behavior on a web-based video-platform
- 2. Collaborative exchange in dyads about diagnosis and creation of joint feedback for the observed teacher on the platform ZOOM
- Coding of the transcribed discussions according to diagnostic (Heitzmann et al., 2019; Kramer et al., 2021a) and collaborative activities (Liu et al., 2015, von Davier et al., 2017)

<u>Participants</u> •

Group	Study Discipline	Age	Sex	Topic of the Video	Topic of Diagnosis
1 Interdisciplinary	Chemistry Edu. (MA) Chemistry (BA)	32 27			Cognitive Activation
2 Interdisciplinary	English Edu. (BA) Physics Edu. (BA)	42 19			Cognitive Activation
3 Same Discipline	Science Edu. (BA) Science Edu. (BA)	25 20			Cognitive Activation
4 Same Discipline	English Edu. (MA) English Edu. (BA)	26 42		0	Constructive Support

Results Diagnostic Activities Group 2 (interdis.) 2.8% 8,3% Group 3 (same dis.) Group 4 (same dis.) 8.9% 0% 20% Hyothesis generation Description ■ Evaluation ■ Learning Consequences ■Suggestions for alternative ■ other **Collaborative Activities** 14.3% Group 1 (interdis.) 8,6% 22.9% Group 2 (interdis.) 34,3%

Example for Activities (

	Coded Segment	Collaborative Activity	Diagnostic Activity
Teacher 1	What did you write down as an alternative approach?	Elicitation	Suggestions for alternative
Teacher 2	So, um, for example, one could give the students homework as preparation beforehand. Not just listening in school first, but rather: please read this paragraph and prepare it for tomorrow. This way, the students might develop a better understanding of the tasks	Sharing	Suggestions for alternative
Teacher 1	Do you think that activates students? I mean, homework and assignments aren't exactly the most popular among students, right? I'm not sure if that really activates them.	Negotiating	Suggestions for alternative
Teacher 2	Okay, yeah, that's true, they are still young. () Hmm. Yeah, I think I'm being too ambitious, but what is your suggestion?	Negotiating/ Elicitation	Suggestions for alternative

<u>Discussion</u>

- learners particularly focused on the part of the diagnosis they had already been prompted during their individual preparation (description, evaluation & sugggestions for alternatives)
- increased amount of Quick consensus and low amount of Negotiation in interdisciplinary teacher teams
- Differences in collaboration patterns during CDR may be caused by emerging power relations (Perl-Nussbaum et al., 2023)
- due to the exploratory nature of this study and the small sample size, the results are not generalizable.
 - in order to balance the effects of other factors, such as gender, age, or expertise level, a replication of the study with a large sample size is being conducted.
- subsequently, conclusions can be drawn regarding which patterns of CDR activities need to be supported at which phase in the collaborative process depending on the group composition of the collaborating teachers

References

von Davier, A. A., Hao, J., Liu, L. & Kyllonen, P. (2017). Inte Prototype. Computers in Human Behavior, 76, 631–640.

SPONSORED BY THE

